

ADeLA 2016, Bogotá, 29 de septiembre 2016

Data processing & analysis consortium

C.

First (GAIA) workshop 1995

Les ric.

Gaia Data Release Nº 1

- Published 14 September 2016
- 2 M ** : TGAS: proper motions & parallaxes
 Sub mas accuracy
- 1 G ** : Secondary sources: positions & G mag.
 10 mas accuracy
- 3 k ** : Light curves
 - 2595 RR Lyr; 599 Cepheids
- 2 k ** : QSO positions, auxiliary solution
 2191 QSOs for alignment to ICRF2

Gaia Data Release Nº 1

- Documentation:
 - 10-15 papers in A&A special feature (presently 5)
 - gaia.esac.esa.int/documentation/GDR1/
 - Must read: Lindegren et al. 2016
- Data: archives.esac.esa.int/gaia
 - Several mirror sites
- Already many papers in arXiv.org

Gaia measures absolute parallaxes

Basic angle must be very constant !

A special device Basic Angle Monitor checks for variations

Figure: Lindegren & Michalik

ADeLA 2016, Bogotá, 29 de septiembre 2016

Basic angle variation

ADeLA 2016, Bogotá, 29 de septiembre 2016

TGAS

- First idea
 - HTPM: take early Gaia data, get 1 mas accuracy position
 - Combine with Hipparcos to get proper motions
- Second thoughts
 - 100 000 stars are too few to calibrate Gaia
 - Additional stars will distort the solution (no p.m., parallax)
- Solution
 - Use the 2+ million Tycho-2 stars
 - Decent first epoch
- Benefit
 - 2+ million parallaxes
 - Much better accuracy for proper motion for Tycho-2

Gaia observations over 5 yr \Rightarrow pos, par, p.m.

Gaia observations over 1 yr \Rightarrow marginal

$\mu - \varpi$ degeneracy for <1 yr observations

Tycho-2 position lifts the degeneracy

Secondary sources

- Only mean positions at epoch 2015.0
 - No proper motion or parallax
- This kind of solution is used in Gaia DR1
- Also needed in future releases
 - E.g. for faint stars with very few detections

Secondary source solutions

Figure: Lindegren & Michalik

- Solution: introduce realistic priors for proper motion and parallax
- See Michalik et al 2015, A&A 583, A68

ADeLA 2016, Bogotá, 29 de septiembre 2016

TGAS proper motions

- Uses Hipparcos and Tycho-2 **positions** as priors
 - Independent of Hipparcos parallaxes
 - Independent of Hipparcos and Tycho-2 proper motions
- Proper motions are absolute at the ±0.03 mas/yr level
 HIP has a rotation of 0.24 mas/yr w.r.t. Gaia DR1
- Precison
 - 0.06-0.10 mas/yr level for Hipparcos stars
 - 1-2 mas/yr for Tycho-2 stars

Tycho-2 proper motions

- Tycho-2 proper motions
 - Tycho observations, ~ 1991
 - Astrographic Catalogue
 - epoch ~ 1890-1950
 - Other ground based catalogues

ADeLA 2016, Bogotá, 29 de septiembre 2016

	Greenwich	+90°	+65°
	Rom	+64°	+55°
	Catania	+54°	+47°
	Helsinki	+46°	+40°
	Potsdam	+39°	+32°
	Oxford	+31°	+25°
	Paris	+24°	+18°
	Bordeaux	+17°	+11°
	Toulouse	+10°	+5°
	Algier	+4°	-2°
	San Fernando	-3°	-9°
	Tacubaya	-10°	-16°
	Santiago	-17°	-23°
	La Plata	-24°	-31°
	Rio	-32°	-40°
	Kapstadt	-41°	-51°
	Sydney	-52°	-64°
	Melbourne	-65°	-90°

TGAS-Tyc2 proper motion difference

Median differences after rotating Tycho-2 pm.s to the Gaia frame

ADeLA 2016, Bogotá, 29 de septiembre 2016

Lindegren et al. 2016

Gaia-DR1 Astrometry

Parallaxes. TGAS vs Hipparcos

- TGAS and Hipparcos parallaxes are independent!
- Comparison confirms global quality of Hipparcos and Gaia
- Analysis allows for derivation of realistic error estimates
- These realistic errors are published in Gaia-DR1

Slide by A. Brown

Gaia

aia

Gaia-DR1 Astrometry

Parallaxes. TGAS vs Hipparcos

Gaia-DR1 Gaia-DR1 limitations Gaia-DR2

Gaia

daia

Overview

- TGAS and Hipparcos parallaxes are independent!
- Comparison confirms global quality of Hipparcos and Gaia
- Analysis allows for derivation of realistic error estimates
- These realistic errors are published in Gaia-DR1

Slide by A. Brown EWASS, Athens 2016.07.04 - 12/27

Parallax Error Accuracy

 Deconvolving parallax distribution gives parallax errors consistent with reported errors

Arenou et al 2016

ADeLA 2016, Bogotá, 29 de septiembre 2016

Special QSO solution

- 135 000 QSOs
 - Mostly in the northern sky
- Proper motion priors: 0±0.01 mas/yr
 - NB much smaller than in the general DR1 approach
- Solve position & parallax
 - Check on parallax zero point
 - 2191 QSOs used for alignment with ICRF2

HIP		Gaia
±0.6 mas	±0.03 mas/yr	±0.04 mas
1991.25		2015.0

Gaia – ICRF2

ADeLA 2016, Bogotá, 29 de septiembre 2016

Parallax errors from QSO

- Large scale variations: 90% of QSO sky has $|median(\varpi)| < 0.3 \text{ mas}$
- Always assume systematic parallax errors of ±0.3 mas
- Some extreme regions may reach ± 1 mas systematics
- Sky average value (QSOs global zero point): -0.04 mas

Pleiades discrepancy Hipparcos-Gaia

ADeLA 2016, Bogotá, 29 de septiembre 2016

Pleiades discrepancy Hipparcos-Gaia

ADeLA 2016, Bogotá, 29 de septiembre 2016

Completeness of Gaia DR1

- Gaia DR1 is a first, preliminary data release
- It has several deficiencies
 - To be improved in future releases

LMC sources in Gaia DR1

ADeLA 2016, Bogotá, 29 de septiembre 2016

Completeness of Gaia DR1

- Holes in poorly scanned areas
- Faint stars missing in dense areas
- Stars often missing if they are bright, blue, red, or fast.

ADeLA 2016, Bogotá, 29 de septiembre 2016

Completeness of TGAS

ADeLA 2016, Bogotá, 29 de septiembre 2016

A very faint TGAS stars

Five year sky coverage

Number of transits in a nominal 5 year interval: smooth coverage, 80 transits on average

Figure by D Michalik

14 month sky coverage

Number of transits during the 14 months for Gaia DR1: some areas are poorly observed

Figure by D Michalik

G 16-17 mag. Gaia relative to model

ADeLA 2016, Bogotá, 29 de septiembre 2016

G 17-18 mag. Gaia relative to model

G 18-19 mag. Gaia relative to model

G 19-20 mag. Gaia relative to model

Completeness – neighbour distance

Neighbour distance – DR1 dense zone

ADeLA 2016, Bogotá, 29 de septiembre 2016

Windows read out around stars

- Windows measure 12 x 12 pixels (typically)
- Pixels are binned on chip before reading
- We receive a string of 12 samples

Windows in case of conflict

- Window for brighter detection is the winner
- Window for the fainter detection will lose
- Truncated windows are not used in Gaia DR1

Conflicts between spectra

- Window for brighter detection is the winner
- We need **at least one** good spectrum for a source
- Fainter source of a pair closer than 2" is lost in DR1

Neighbour distance – DR1 dense zone

ADeLA 2016, Bogotá, 29 de septiembre 2016

Simulation: 500000 stars/sq.deg

Simulation: 322000 stars remain

ADeLA 2016, Bogotá, 29 de septiembre 2016

Neighbour distance – DR1 sparse zone

WDS seen by Gaia DR1

ADeLA 2016, Bogotá, 29 de septiembre 2016

Gaia DR1 Documentation 7.4.3 Babusiaux & Turon

Gaia DR1 angular resolution

- Gaia PSF in ~ 100 mas, pixels 59 mas
 - Eventually we will have a good resolution
- Gaia DR1
 - Dense fields
 - Problems start at 2-4 arcsec separation
 - Faint sources severely affected
 - Max density 500000 stars/sq.deg.
 - Sparse fields
 - Problems start at 2 arcsec separation

Parallax uncertainties

ADeLA 2016, Bogotá, 29 de septiembre 2016

Gaia Data Release 2

- 2017 last quarter (best case)
- 5 parameter astrometry for 1000+ million stars
 - No TGAS-2 foreseen
- G, BP, RP broad band magnitudes
 - Some astrophysical classification
 - No BP/RP spectra yet
- Radial velocities for bright stars
- Only "well-behaved" sources
 - Do not expect binaries yet

Farther future

- Onboard consumables
 - May last till 2023/24, i.e. 9-10 years of mission
- Mission extension
 - Will be decided later this year

ADeLA 2016, Bogotá	, 29 de se	eptiembre	2016
--------------------	------------	-----------	------

Conclusions: TGAS

- TGAS parallaxes
 - Two million stars
 - Much superior to Hipparcos
 - Local systematic errors of order ~ 0.3 mas
 - Don't trust blindly \sqrt{N}
- TGAS proper motions
 - Systematically much better than Tycho-2

