Detection and dynamics analysis of Space Debris in the GEO Ring

E. Lacruz1, C. Abad1, J.J. Downes1 D. Casanova2, & E. Tresaco2

1Centro de Investigaciones de Astronomía (CIDA) Venezuela
2Centro Universitario de la Defensa (CUD) de Zaragoza, España

VII ADeLA 2016
September 28 to 30, 2016
Stationary Orbit

- $P = \text{sideral day}, \ i = 0 \ \Rightarrow \ \text{stationary satellites.}$
- Fixed point (little window due to perturbations) on the equatorial plane of the planet.

(Anderson, et. al., 2013)
Stationary Orbit

- $P = \text{sideral day, } i = 0 \Rightarrow \text{ stationary satellites.}$
- Fixed point (little window due to perturbations) on the equatorial plane of the planet.
- Distribution of satellites GEO ring (Anderson, et. al., 2013).
Goals

Detect and track orbiters in the GEO ring with low Signal to Noise Ratio, which allow to calculate preliminary orbits (Initial condition for ephemeris determinations).

1. Detect orbiters in the GEO ring through optical tracking.
2. Determine the relative motion of orbiters in the GEO ring.
3. Calculate geocentric coordinates on the order of 1″ and determine preliminary orbits.
4. Predict the area to mass ratio and the orbital dynamics.
Optical Tracking

- Field observation.

Apparent density catalogued orbiter in the GEO ring (Schildknecht et al. 2004).

ESA’s 1-meter telescope at the Teide Observatory in Tenerife.
Optical Tracking

- Field observation.

Apparent density catalogued orbiter in the GEO ring (Schildknecht et al. 2004).

- Field observation from OAN:

\[
\alpha \in [8^\circ, 117^\circ] \iff [0^h53, 7^h8] \text{ (right ascension).} \\
\delta \in [-2^\circ, +2^\circ] \text{ (declination).}
\]
Observational Tools

Panoramic view of the observatory (OAN)

1-meter Reflector Zeiss telescope in mode f/5.
Observational Tools

1-meter Reflector Zeiss telescope in mode f/5.

CCD PROLine 9000 2kx2k.
• Optical tracking method.

The telescope is fixed with the sidereal motor off.
Exposure time 10 second.
Clear filter.
Mode F/5.

• Two years of data.
 • 200 Gbs \approx 20000 \text{ observations}.
 • Most of the observations contain GEO satellites.

\(\alpha \in [8^\circ, 92^\circ] \) (right ascension) scattered observations.
\(\delta \in [-9^\circ5, -9^\circ5] \) (declination).
Ground Tracking and Data Acquired

- Observations: March 03, 2016.
Ground Tracking and Data Acquired

- Point-like (EchoStar8 and QuetzSat1) and streak-like (field stars) images.
Ground Tracking and Data Acquired

- Point-like (EchoStar8 and QuetzSat1) and streak-like (field stars) images.
Ground Tracking and Data Acquired

- Point-like (EchoStar8 and QuetzSat1) and streak-like (field stars) images.
Ground Tracking and Data Acquired

- Point-like (EchoStar8 and QuetzSat1) and streak-like (field stars) images.
Ground Tracking and Data Acquired

- Point-like (EchoStar8 and QuetzSat1) and streak-like (field stars) images.
Ground Tracking and Data Acquired

- Point-like (EchoStar8 and QuetzSat1) and streak-like (field stars) images.
• Point-like (EchoStar8 and QuetzSat1) and streak-like (field stars) images.
Automatic calibration process. This is a standard step before the reduction process.

- Loading all image calibrations (Bias, Dark, Flat, and all observations).
- Trimming and overscan (all observations).
- Determination of Signal to Noise Ratio (SNR) (MasterBias).
- Determination of Terma Noise (MasterDark).
- CDD sensitivity (MasterFlat and Normalized Flat).
- Image calibrations.
Checking the Calibration Process

Distribution functions along the right ascension, α.
Checking the Calibration Process

Distribution functions along the declination, δ.

DISTRIBUTION ALONG THE Y AXIS

FLATTENING ALONG THE X AXIS
Detection and dynamics analysis of Space Debris in the GEO Ring
Detecting Objects

Detection and dynamics analysis of Space Debris in the GEO Ring
Detecting Objects

Detection and dynamics analysis of Space Debris in the GEO Ring
Detecting Orbiters

Space Debris Candidates.
Measurement of coordinates \((x, y)\)

- Point source images: to fit a Gaussian PSF.

\[
f(x, y) = A e^{-\left(\frac{(\mu_x - x)^2}{2 \sigma_x^2} + \frac{(\mu_y - y)^2}{2 \sigma_y^2}\right)}.
\]
Measurement of coordinates \((x, y)\)

- Trail images (right ascension axis) to fit a Tepuy PSF.

\[
g(u) = \frac{A}{2 \tan^{-1}(bc)} \left[\tan^{-1}(b(u - c)) - \tan^{-1}(b(u + c)) \right],
\]

\[u = x - x_0.\]
Measurement of coordinates \((x, y)\)

- Trail images (declination axis) to fit a Gaussian PSF.

\[
h(y) = A e^{-\left(\frac{(\mu_y - y)^2}{2 \sigma_y^2}\right)}.
\]
Identification and Transformation

- **Identification:**
 - We use the **gnomonic projection** to transform the CCD to the celestial sphere, i.e. transforming maximum circles into straight lines on the plane focal telescope.
 - \((x_*, y_*)_m \rightarrow (u, v, w)\).
 - We use the UCAC4 stars catalogue to identify \((\alpha_*, \delta_*)_{cat} \rightarrow (\xi, \eta, \zeta)\).

- **Transformation:**
 - We calculate the transformation \((R)\) between coordinate systems.
 - \((u, v, w) \leftrightarrow (\alpha_*, \delta_*)_{cat}\).
 - \(R\) depends on the orientation of CCD respect to the celestial sphere and telescope position.

\[
(x_*, y_*)_m \rightarrow (u, v, w) \leftrightarrow (\xi, \eta, \zeta) \leftrightarrow (\alpha_*, \delta_*)_{cat}.
\]
Three stars are needed to find out the matrix solution. If we use n stars for the solution we obtain $3n$ condition equations (Stock’s Method, (Stock, 1981)).

The orthogonality of the matrix tells about how good is the transformation matrix between coordinates.
Off-axis Aberrations

The \(oaa \) are the off-axis aberrations, which is given by:
\[
oaa = a_3 \frac{y^3}{R^3} + a_2 \frac{y^2 \theta}{R^2} + a_1 \frac{y \theta^3}{R} + a_0 \theta^3,
\]
where, \(y \) and \(\theta \) are the field angle and aperture radius.

- Spherical aberrations.
- Coma.
- Astigmatism.
- Distortion and field of curvature.
- We need to determinate the telescope field distortion.

- An error of 1" is equivalent to an error of 200 m (at 42164 km).
Field distortion

Field distortion

Field Distortion for 1m OAN Reflector (F5)

E. Lacruz, D. Casanova, E. Tresaco, C. Abad, & J.J. Downes

Detection and dynamics analysis of Space Debris in the GEO Ring
Relative Motion of a GEO satellite in the operations window 43° W, nearby equilibrium unstable point 11.5 W. March 03-04, 2016 (34 measurement orange point) and March 04-05, 2016. (21 measurement brown point).
Relative Motion of a GEO satellite in 43° W. Movement

\[20.1776'' \iff 7.51625m \]
Relative Motion

Relative Motion of a GEO satellite in 43° W. Movement

\[5.33397'' \leftrightarrow 11.333'\text{m}. \]
Relative Motion of a GEO satellite in 43°. Adjustment by least square at coordinates (x, y) are through of the circular functions.
Relative Motion satellite in window 78°. Telemetric and optical tracking nearby equilibrium stable point (105.3°) W.
Conclusions

- Optical Tracking and acquired many astrometric observations.

- We determinate de field distortion and correct the coordinates.

- We calculate the relative motion of the satellites in the GEO ring nearby the equilibrium stable and unstable point.

- Opening to study perturbations.
Future work

- Orbit Determinations (ephemeris).
- Study the behavior the relative motion in all GEO ring and the possibility determinate the effect make of perturbations, gravitational potential and Solar Radiation Pressure.
- Calculation of the parallax, for determinate the distance, r.
Thanks for your attention!!!
References

References