
ANALYSIS OF THE BAYESIAN CRAMÉR-RAO
LOWER BOUND IN PHOTOMETRY:

STUDYING ACHIEVABILITY
Sebastián Espinosa∗, Jorge F. Silva, Rene A. Mendez, and Marcos E. Orchard
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS - UNIVERSIDAD DE CHILE

RESEARCH PROBLEM
• Characterize the Bayesian Cramér-Rao

(BCR) bound and the Mean Square
Error (MSE) of the best estimator for
the flux (Photometry) of point-like ob-
jects on a linear charged coupled de-
vice (CCD) detector.

• We assume access to a prior knowl-
edge in a Bayesian setting [2] (pro-
vided by stellar catalogues) to deter-
mine the gain with respect to the clas-
sical parametric scenario.

• We also study the performance of the
Maximum a posteriori (MAP) estimator.

OBSERVATIONAL SETTING

• Gaussian PSF
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• Background is characterized by
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• Parametric scenario: Given an unbi-
ased estimator θ̂() and a measurement
vector ~I = (I1, ..., In) with n inde-
pendent random variables driven by a
poisson distribution with expectation
value given by λi(F ) = G ·F ·gi+G ·B,
then the Cramér-Rao bound states that:

Var(θ̂(I1, ..., In)) ≥
1

IF̃ (n)
, (3)

where IF̃ (n) is the Fisher’s Information
given by [1]:
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BAYESIAN CRAMÉR-RAO LOWER BOUNDS
If we assume that the flux F is a random variable; e.g., φF = N(µF , σpriori).

MSE(F̂ ) = EI,F [(F̂ − F )2]

Let F be a random variable and ~I = (I1, ..., In) a measurement vector. The Mean Square Error
(MSE) of any estimator F̂ is bounded by:

E[(F̂ − F )2] ≥
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=
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E(IF (n)) + I(φ)
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≡ σ2
BCR (7)where

1. I(φ) is the Prior Information, characterized by the probability density φF .

2. E(IF (n)) is the average Fisher’s Information of the parametric setting (expectation with
respect to measurement data).

It is found that the BCR is always smaller than their parametric equivalents or Mean Cramér-
Rao (MCR) [3], [4].

1

E (IF (n)) + I(φ)
≤ E
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)
(8)

We assume an unbiased Gaussian prior distribution N(µF , σF ) where E (φ) = µF .
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GAIN AND ESTIMATORS

• We define the gain in performance for the
prior as

gain(φ) =
E
(

1
IF (n)

)
E (φ)

−
1

E(IF (n))+I(φ)

E (φ)
(9)

• We evaluate gain (φ) in different resolution
scenarios (ultra high or survey precision)
defined as σF = α · µF , and α ∈ (0, 0.1]
depending on the precision regime.

• The Minimum MSE is achievable by the
posterior mean, is close to the BCR Bound
(see Results).

• It can be proved that, in some regimes (e.g.
with high precision) the MAP rule is an ef-
ficient estimator that reaches the BCR.

CONCLUSIONS
• The gain from the use of prior infor-

mation is significant for low Signal-to-
Noise regime as expected.

• In the high Signal-to-Noise regime
there is no appreciable gain and, hence,
BCR equals the MCR.

• In the regime of survey mode, the MAP
estimator follows closely the BCR.

• Future Work: We should consider
Read-Out-Noise as a random variable
in the observational setting.
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