

Dynamical evolution of the Orion Trapezium

Christine Allen

Instituto de Astronomía, UNAM, México

Collaborators: R. Costero, A. Ruelas-Mayorga, L.J. Sánchez

ADeLA 2016, Bogotá, Colombia

Very few studies on dynamical evolution of trapezia exist. Models of simulated systems by:

-Allen & Poveda 1974; found lifetimes of trapeziumlike systems of about 500,000 yr
-Pfamm-Altenburg & Kroupa 2006; found much shorter lifetimes, around 5000 yr

But: their definition of trapezia was different, they used different stability criteria and different values for the masses

And: neither attempted to use observed values for the actual Orion trapezium

-Allen et al. (2015) using transverse motions and radial velocities of Close et al. (2013) modelled the dynamical evolution of the sub-trapezium (or mini-cluster) Theta¹ Ori B, and found its lifetime to be less than 30,000 yr.

-Recently, transverse motions of bright Orion Trapezium members were obtained (Olivares et al. 2013), by combining historical separation and PA measures with diffracto-astrometry measures on HST images.

-This motivated us to attempt to model the dynamical evolution of the Orion Trapezium by N-body simulations using radial velocities and masses from the literature.

Problem: Multiplicity in the Orion Trapezium

Upper part of the Theta 1 Ori cluster as imaged over 30" × 30" FOV at Gemini with the Hokupaa AO system.. Note that "A1" is really a spectroscopic binary (A1-A3), where the unseen companion A3 is separated from A1 by 1 AU (Bossi et al. 1989). => A: TRIPLE Also E: escaping spectroscopic binary (Costero et al. 2008)

Main difficulty: Multiplicity in the Orion Trapezium

- C: astrometric and spectroscopic binary, possibly with a third companion. It is also an oblique magnetic rotator
- A: eclipsing and spectroscopic binary with a probable interferometric companion
- B: eclipsing binary, with a possible third star, and with three additional interferometric companions, i.e. it is a quintuple (or sextuple) mini-cluster
- D: spectroscopic binary
- E: escaping spectroscopic binary

Hence, systemic velocities and masses are VERY difficult to obtain, and have large observational uncertainties

LBT AO Br γ (2.16 µm) images of the θ 1 Ori B group. Resolution 006. Logarithmic color scale. North is up and east is to the left. Strehl is ~75% (Close et al. 2013).

Note that the object "B1" is really an eclipsing spectroscopic binary (B1-B5), where the unseen companion B5 orbits B1 every 6.47 days (Abt et al. 1991).

The system Theta¹ Ori B

Allen et al. (2015) tried to answer the questions:

Is the group Theta¹ Ori B long-term stable? Are orbits B2-B3, (B2+B3)- (B1+B5) long-term stable?

- -Precise positions and relative (planar) velocities are available.
- -Since z-positions and radial velocities are unknown we used N-body Monte Carlo simulations to provide insight.

Results

Three series, Tc= 5, 10, 100 (1500-30 000 years)

	5	10	100
Stable	29, 39, 35	18, 26, 22	1,1, 4
Triple	43, 40, 49	42, 46, 55	19, 28, 31
Dissolved*	28, 21, 16	40, 28, 23	80, 71, 45
*Double ²	6, 1, 0	6, 4, 4	7, 5, 9

Other results, some expected, some surprising:

- Groups evolve and disintegrate in very short times.
- Most massive stars (B1+B5)-B2 form a close binary in 49-60 % of the cases. Many binaries are formed, some with major semi-axes as small as 6 AU
- The putative initial binary (B2-B3) hardly ever survives
- Most escaping stars are low mass, but in 2-5% of the cases the most massive star (B1+B5) escaped.
- Most escapers are low V, but some runaway stars (7%) with
 V > 3Ve (21 km/s) are produced.

Theta¹ Ori B: Summary

 The quintuple, low mass system (sub-trapezium) Theta¹ Ori B is a bound group, but extremely unstable dynamically. We showed that it will probably disintegrate in less than 30,000 yr, producing low velocity escapers and perhaps a runaway star, both early and late in its dynamical evolution.

Modelling now the Orion Trapezium

Transverse velocities (with respect to to C):

separation velocities A: -2,3 (+-0,7) km/s B: -1.4 (+-0.9) C: 0.0 D: -0.9 (+-0.6) E: +5.7 (+-0.8)

projection angle 221.9 degrees 72.9 0.0 151.8 51.5

Modelling now the Orion Trapezium

Systemic radial velocities (with respect to to C):

A: 0.7 +-1.0 B:-1.3 +-1.0 C: 0.0 D: 5.1+-3.0 E: 7.0 +-1

NB. In order for none of the bright components to have radial velocities exceeding the escape velocity we took the average of the two best observational values for C

Modelling now the Orion Trapezium

Aggregate masses of the components:

- A: 27 (+-1.35) Mo
- B: 15 (+-0,75) Mo
- C: 45 (+-10) Mo, or
- D: 25 (+-1.25) Mo

65(+-3.25) Mo

- E: 7 (+-0.35) Mo
- All components will be considered as point masses for the N-body integrations

Monte Carlo models of the Orion Trapezium

- -As initial conditions we take the planar positions and velocities of Olivares et al (2013)
- -z-positions are randomly assigned, with a dispersion of 1500 AU
- -Radial velocities and masses are taken from the literature- with caution!
 - -Random perturbations compatible with observational uncertainties are applied to all quantities
- -For the integrations we use the Mikkola&Aarseth code, which includes chain regularization.

Results: lifetimes

Results: lifetimes

Results: observed lifetimes (S < 40,000 AU)

Results: observed lifetimes S < 40,000 AU

Velocity distribution of ejected stars (only slow escapes)

Major semiaxes distribution of **binaries** formed (wide binaries)

Eccentricity distribution of binaries formed (tends to thermal)

Major semiaxes eccentricity relation of binaries formed (few e < 0.3)

Results: summary

- Lifetimes (<10,000 yr) are too short with M(C) = 45 Mo
- Lifetimes more reasonable (about 30,000 yr) with M(C) = 65 Mo
- The dynamical lifetime of the Orion Trapezium agrees with the age (<30,000 years) we found for one of its components, the mini-cluster Theta¹ Ori B, provided we assume M(C) = 65 Mo.
- Star E always escapes right at the beginning (within 2-3 thousand years)
- Reversing the runs, Star E is recaptured in 26% of the cases

Results: summary-cont

- The end result of integrations is a tight binary or a hierarchical triple
- The ejected stars have low velocities. No runaways were formed.
 - No very close encounters occurred
- The properties of binaries formed (distribution of major semiaxes, of eccentricities, the period-semiaxis relation) are compatible with observations

Discussion

A possible problem: is the disintegration too rapid?

-There are other extremely young structures in the Orion region. Examples: -the BN-I-n object (500 years), -the Orion Nebula itself. Its illumination age is about 15,000 yr (O'Dell et al. 2009)

-The dynamical age of Theta¹ Ori agrees with that we found for one of its components (B: the mini-cluster): < 30,000 years

-Let us not forget that masses and radial velocities (especially for C) are very uncertain

- Radio sources BN, I and n are proto-stars with very high velocities

-They were explained as the result of violent interactions that occurred 500 years ago... (Rodríguez et al. 2005)

Conclusion

- The lifetimes we find by Monte Carlo N-body simulations of the dynamical evolution of Orion Trapezium-like systems are implausibly short with the "best" value for the mass of component C (45Mo)
- With a larger mass for C (65 Mo), still compatible with some observational determinations, they become comparable to the ages of other young structures in the Orion region, which range from about 500 to 15,000 30,000 years.

Muchas gracias

